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Abstract In Part I (Gounaris, C.E., Floudas, C.A.: Tight convex understimators
for C2-continuous functions: I: Univariate functions. J. Global Optim. (2008). doi:
10.007/s10898-008-9287-9), we introduced a novel approach for the underestimation of
univariate functions which was based on a piecewise application of the well-known αBB
underestimator. The resulting underestimators were shown to be very tight and, in fact, can
be driven to coincide with the convex envelopes themselves. An approximation by valid
linear supports, resulting in piecewise linear underestimators was also presented. In this
paper, we demonstrate how one can make use of the high quality results of the approach
in the univariate case so as to extend its applicability to functions with a higher number of
variables. This is achieved by proper projections of the multivariate αBB underestimators
into select two-dimensional planes. Furthermore, since our method utilizes projections into
lower-dimensional spaces, we explore ways to recover some of the information lost in this
process. In particular, we apply our method after having transformed the original problem
in an orthonormal fashion. This leads to the construction of even tighter underestimators,
through the accumulation of additional valid linear cuts in the relaxation.

Keywords Global optimization · Convex underestimation · αBB · Piecewise affine
underestimators

1 Introduction

Very important and mathematically complex optimization problems arise frequently in pro-
cess synthesis and design. The synthesis of separation sequences (e.g., Aggarwal and Floudas
1990; Yeomans and Grossmann 1999), reactor networks (e.g., Kokossis and Floudas 1990,
1994; Achenie and Biegler 1990) and heat exchanger networks (e.g., Ciric and Floudas
1989; Yee and Grossmann 1990) have been traditionally receiving a lot of attention. Other
problems of chemical engineering nature, such as finding the location of all azeotropes
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(Maranas et al. 1996; Harding et al. 1997) and phase and chemical equilibrium (McDonald
and Floudas 1994, 1995, 1997), as well as problems arising in computational biology (e.g.,
protein structure prediction (Floudas et al. 2006) have all been addressed with deterministic
global optimization algorithms, and more particularly with the αBB (Maranas and Floudas
1994; Androulakis et al. 1995; Adjiman et al. 1998a,b) framework. The latter has also found
application in other interesting problems, such as enclosing all solutions of systems of non-
linear equations (Maranas and Floudas 1995), estimating parameters in nonlinear algebraic
models (Esposito and Floudas 1998) and solving bilevel programming problems (Gümüş and
Floudas 2001).

The αBB method employs a branch and bound scheme, where sequences of monoton-
ically improving lower and upper bounds for the global solution are generated. The lower
bounding is achieved through convex underestimation of the functions under question that
are of increasing tightness as the branching process evolves. Therefore, the development of
tight convex underestimators of nonconvex functions is of fundamental importance for the
computational performance of the method.

There have been many results in the literature for the convex relaxation of problems
that exhibit some special structure. These include results on bilinear (McCormick 1976;
Al-Khayyal and Falk 1983), trilinear (Meyer and Floudas 2003, 2004), multilinear (Ryoo
and Sahinidis 2001) and fractional (Maranas and Floudas 1995; Tawarmalani and Sahinidis
2001; Tawarmalani and Sahinidis 2002b) terms, univariate monomials of odd degree (Liberti
and Pantelides 2003), as well as results on trigonometric (Caratzoulas and Floudas 2005)
and edge-concave (Tardella 2003; Meyer and Floudas 2005) functions. For a comprehensive
study, see the textbooks by Sherali and Adams (1999), Floudas (2000), Horst et al. (2000),
Tawarmalani and Sahinidis (2002a), Horst and Tuy (2003), Zabinsky (2003) and Floudas
and Pardalos (1995, 2003), as well as the recent review papers by Floudas (2005) and Flou-
das et al. (2005). When the function structure cannot be exploited specifically, one can use
the αBB underestimator (Maranas and Floudas 1994; Androulakis et al. 1995; Adjiman and
Floudas 1996) for general nonconvex functions. This underestimator derives from the non-
convex function of interest by subtracting a separable positive quadratic function. Given that
this separable quadratic function is sufficiently large, all nonconvexities in the original func-
tion can be overpowered, resulting into a convex underestimator. One could alternatively use
a new class of general purpose convex underestimators that has been developed by Akroti-
rianakis and Floudas (2004a,b). These underestimators are derived in a similar fashion, by
subtracting an exponential term from the original function. These two classes (quadratic and
exponential) are in fact the only optimal ones, as has been shown by Floudas and Kreinovich
(2007a,b).

2 Synopsis of part I

In Part I (Gounaris and Floudas 2008), we developed a novel method to determine convex
underestimators for univariate functions f (x). The method proposed partitioning of the ini-
tial domain in N > 1 segments of equal length and construction of the corresponding αBB
underestimator (Maranas and Floudas 1994; Androulakis et al. 1995; Adjiman and Floudas
1996; Adjiman et al. 1998a,b) for each subdomain. In order to combine the convex pieces
of this piecewise underestimator, the method utilizes two algorithms, called “inner” and
“outer”. The “inner” algorithm is applicable to a given pair of pieces and its purpose is
to identify reliably the tightest possible supporting line segment that underestimates both
pieces in their respective subdomains. The “outer” algorithm performs a set of suitable calls
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to the “inner” one in its effort to identify which of the line segments are required for an
overall convex understimator U (x). This resulting underestimator is C1-continuous since it
consists of parts of the identified line segmets and parts of the convex pieces themselves. As
an extension of this approach, one could consider only the lines defined by the line segments,
resulting in a piecewise linear underestimator V (x) of the original function f (x).

The computational results demonstrated that the method yields underestimators of high
quality, in terms of lower bound obtained, as well as in tightness of the underestimators across
the whole domain under consideration. It was theoretically proven that, for sufficient level
of partitioning, the understimator U (x) can be the convex envelope of f (x) itself, while the
underestimator V (x) can be ε-close to the convex envelope, with ε > 0 being arbitrarily
small.

Since these univariate underestimators are very tight, the remaining question is whether
we can exploit them so as to construct underestimators of functions in higher dimensions. In
this paper, we present some extensions of the method for application on multivariate func-
tions that involve dimension reduction of the problem through proper projections into lower-
dimensional spaces. For consistency, the notation used is a generalization of that used in Part I.

3 Method description

Let f (x) be a function of V variables that needs to be underestimated in a box domain
D = [x L

1 , xU
1 ]× . . .×[x L

V , xU
V ]. We choose integers Nv > 1, v = 1, 2, . . . , V and partition

each range [x L
v , xU

v ] in Nv segments of equal length. Thus, the j th segment of the vth set

would be defined as [x j−1
v , x j

v ], where: x j
v = x L

v + j
Nv

(xU
v − x L

v ), j = 0, 1, . . . , Nv . The

complete V -dimensional domain D has now been partitioned into N =
V∏

v=1
Nv box subdo-

mains of equal measures. Let Di be such a V -dimensional subdomain. It is uniquely defined
by a set of indices iv, 1 ≤ iv ≤ Nv, ∀v = 1, 2, . . . , V . Thus, the i th subdomain would be
defined as Di = [xi1−1

1 , xi1
1 ] × . . . × [xiV −1

V , xiV
V ].

For every subdomain Di , i = 1, 2, . . . , N , we construct the corresponding αBB under-
estimator (Maranas and Floudas 1994; Androulakis et al. 1995; Adjiman and Floudas 1996;
Adjiman et al. 1998a,b):

Pi (x) = f (x) −
V∑

v=1
αi

v

(
xv − xiv−1

v

)
(xiv

v − xv)

αi
v = max

⎧
⎪⎨

⎪⎩
0,− 1

2

⎛

⎜
⎝h(i)

vv −
V∑

u=1
u �=v

max

{

|h(i)
vu |, |h(i)

vu |
} (

xiu
u −xiu−1

u

)

(
xiv
v −xiv−1

v

)

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

(1)

where h(i)
vu and h(i)

vu are respectively lower and upper bounds of ∂2 f/∂xvxu that are valid for
the entire subdomain Di .

Note that although an underestimator Pi (x) can be defined outside its respective subdo-
main, its convexity is only guaranteed for x ∈ Di .

We select variable w, 1 ≤ w ≤ V , which we designate to be the active variable, and
enumerate all Mw = N/Nw permutations of indices iv, v �= w. Every such permutation

m, 1 ≤ m ≤ Mw, corresponds to a subdomain Dwm = [
x L
w, xU

w

]×
V∏

v=1
v �=w

[
xiv−1
v , xiv

v

]
, which
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Fig. 1 Partitioning of the multidimensional domain D

can be further divided into Nw subdomains Dwmj =
[
x j−1
w , x j

w

]
×

V∏

v=1
v �=w

[
xiv−1
v , xiv

v

]
, j =

1, 2, . . . , Nw . These subdomains, depicted in Figure 1, belong to the set of the original sub-
domains Di (for iw = j) and therefore each one has an underestimator Pwmj (x) associated
with it, that is:

Pwmj (x) = f (x) − αi
w

(
xw − x j−1

w

) (
x j
w − xw

)
−

V∑

v=1
v �=w

αi
v(xv − xiv−1

v )(xiv
v − xv) (2)

where index i satisfies Di = Dwmj and parameters αi
v , v = 1, 2, . . . , V are calculated

according to Eq. 1.
For every such subdomain Dwmj , j = 1, 2, . . . , Nw , we define the following univariate

function:

Gwmj (xw) = min
xv

∀v �=w

Pwmj (x), x j−1
w ≤ xw ≤ x j

w (3)

Since they correspond to the minimum of a convex function over a subset of its variables,
these functions are convex. Furthermore, each one is defined over a different segment of[
x L
w, xU

w

]
. Therefore, each one can be considered as a convex piece of an overall piecewise

convex underestimator. The latter is fully suitable for application of the convex underestima-
tion method for univariate functions which was described, in detail, in Part I (Gounaris and
Floudas 2008). Figure 2 depicts how three functions Gwmj (xw), j = 1, 2, 3 are extracted
from three adjacent underestimators Pwmj (x), j = 1, 2, 3.

Note that continuity between pieces, Gwmj (x j
w) = Gwm( j+1)(x j

w), which holds in the
case of univariate functions, might in general not hold in the multivariate case. However, this
does not limit the applicability of the univariate method, since its “outer” algorithm does not
pose such a requirement.
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Fig. 2 Functions Pwmj (x) and corresponding functions Gwmj (xw)

Also note that there is no need to know these functions explicitly. The value of these
functions at any xw can be obtained reliably with the use of a standard local optimization
solver, from the direct solution of the (V − 1)-dimensional convex minimization problem
of Eq. 3. A numerical approximation with the use of finite differences can be used for the
various derivatives required.

Let Vwm(xw) be the piecewise linear underestimator obtained by the univariate method,
and let it be the pointwise maximum of Kwm associated lines, that is:

Vwm(xw) = max {Twmk(xw), ∀k = 1, 2, . . . , Kwm} , x L
w ≤ xw ≤ xU

w (4)

Without loss of generality, let us assume that the lines Twmk are arranged in order of
ascending slope, that is, slope(Twm(k−1)) < slope(Twmk), k = 2, 3, . . . , Kwm , and that the
set already includes the potential augmented tangents at the domain edges, designated as T0

and TK+1 in Part I (Gounaris and Floudas 2008).
Univariate underestimator Vwm(xw) could, in principle, be considered as a multivariate

function that is dependent to only one variable, xw , and defined over the whole multidimen-
sional (dimension V ) subdomain Dwm . That is:

Vwm(xw) → Vwm(x), x ∈ Dwm (5)

Function Vwm(x) is piecewise affine and consists of segments of V -dimensional hyper-
planes. Since these hyperplanes depend only on the wth variable, they are parallel to all
standard basis vectors ev with the exception of ew (to which they are parallel only if the
slope of the corresponding line Twmk is zero). This function is a valid underestimator for the
original function f (x) across the whole subdomain Dwm .

Applying the aforementioned procedure for every permutation m = 1, 2, . . . , Mw , we
come up with a collection of such underestimating segments, each of which is a valid
underestimator for the function f (x) across a subset of its original domain D. Figure 3
depicts underestimators Vwm(x) for eight permutations.
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Fig. 3 Function f (x) and underestimators Vwm (x) for every permutation m = 1, 2, . . . , 8

Let us use index m = 0 to refer to a piecewise affine underestimator, Vw0(x), that would
be valid for the whole domain of interest, D. In order to develop such an underestimator, we
have to combine information from all the underestimating segments that correspond to per-
mutations m = 1, 2, . . . , Mw . This combination can be achieved back in the projection space,
by computing the lower hull of the set of all underestimators Vwm(xw). In fact, one needs to
consider only the vertex points of each underestimator Vwm(xk) (that is the points of inter-
section between two lines Twm(k−1) and Twmk), as well as their end points

(
x L
w, Twm1(x L

w)
)

and
(
xU
w , Twm(Kwm )(xU

w )
)
. Any standard 2d convex hull algorithm (e.g., Graham-Scan) can

be used for this purpose. The lower hull is a convex piecewise linear function Vw0(xw), and
it is the pointwise maximum of Kw0 lines, that is:

Vw0(xw) = max {Tw0k(xw), ∀k = 1, 2, . . . , Kw0} , x L
w ≤ xw ≤ xU

w (6)

By construction, this function is a convex underestimator of all pieces Gwmj (xw) for all
permutations, that is:

Vw0(xw) ≤ Gwmj (xw), xw ∈ [x j−1
w , x j

w], ∀ j = 1, 2, . . . , Nw , ∀m = 1, 2, . . . , Mw (7)

Therefore, function Vw0(xw), if considered as Vw0(x), is a valid underestimator for func-
tion f (x) across its whole original domain D. Figure 4 depicts the different segments and
illustrates how these can be combined into an overall underestimator. The side view corre-
sponds to the two-dimensional projection and depicts the underestimators Vwm(xw) for all
permutations m = 1, 2, . . . , Mw , superimposed with their convex lower hull Vw0(xw).

For any selection of the active variable w, the method will yield a convex (piecewise
affine) underestimator which would be valid for the whole domain of interest, D. However,
the method can be independently applied for every variable being active (one at a time),
leading to a collection of valid underestimators. The pointwise maximum of all these is itself
a valid convex underestimator, and is tighter (or equally tight) to the original function than
any of its predescessors. Thus, the resulting underestimator one could use is:
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Fig. 4 Combination of underestimators Vwm (x), m = 1, 2, . . . , Mw into an overall underestimator Vw0(x)

Fig. 5 Underestimators Vw0(x), w = 1, 2, . . . , V and their pointwise maximum, undererestimator V (x)

V (x) = max {Vw0(x), ∀w = 1, 2, . . . , V } , x ∈ D (8)

Figure 5 depicts the different underestimators Vw0(x) along with their pointwise maxi-
mum, underestimator V (x).

Note that the underestimator V (x) is also piecewise affine, and can be represented in
the problem relaxation as a set of linear constraints. Since we do not know explicitly which
hyperplanes Tw0k(xw) → Tw0k(x), k = 1, 2, . . . , Kw0, w = 1, 2, . . . , V contribute some
part of theirs to the overall underestimator V (x), all of them should be included in this
relaxation, despite the fact that some may end up being redundant.

Let L(x) be a convex underestimator of function f (x) in domain D. Equation (9) shows
the general relaxation of a nonlinear programming problem (NLP) into a convex nonlinear
programming problem (CNLP).
{

min
x

f (0)(x)

s.t. f (q)(x) ≤ 0 , ∀q = 1, 2, . . . , Q

}

→
{

min
x

L(0)(x)

s.t. L(q)(x) ≤ 0 , ∀q = 1, 2, . . . , Q

}

(9)

Since our method produces piecewise affine underestimators L ≡ V , the resulting convex
relaxation is just a linear programming problem (LP), which takes the form of Formula-
tion (10).
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{
min

x
V (0)(x)

s.t. V (q)(x) ≤ 0 , ∀q = 1, 2, . . . , Q

}

⇔

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min
µ,x

µ

s.t. µ ≥ T (0)
w0k(xw),

{∀k = 1, 2, . . . , K (0)
w0∀w = 1, 2, . . . , V

}

T (q)
w0k(xw) ≤ 0,

⎧
⎨

⎩

∀k = 1, 2, . . . , K (q)
w0∀w = 1, 2, . . . , V

∀q = 1, 2, . . . , Q

⎫
⎬

⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(10)

4 Domain rotation

The methodology presented in Sect. 3 involves the minimization of underestimators Pwmj (x),
over all their variables with the exception of one, variable xw, which is designated as “active”.
This results into univariate functions Gwmj (xw), whose two-dimensional epigraphs coincide
with the projections of the (V +1)-dimensional epigraphs of the V -variate functions Pwmj (x),
that is:

epi
xw∈

[
x L
w,xU

w

]
{
Gwmj (xw)

} = Pr{ew,eV +1}
epi

x∈Di

{
Pwmj (x)

}
(11)

Whenever such a projection into spaces of lower dimensionality is involved, there is the
possibility that some useful information is lost. Some of this lost information will be recov-
ered if we opt to apply the methodology for every variable being “active”, one at a time, which
basically calls for projecting into V different two-dimensional planes, each one being parallel
to a different basis vector ev , v = 1, 2, . . . , V . However, since there is a finite number of
variables in our problem, there is a limited number of planes to which we can project. If we
want to enhance further the collection of underestimators that we will eventually accumulate
in the relaxation (thus improve our chances for better tightness/lower bound), we will have
to project into additional planes, that do not correspond to some variable that is “natural” to
the problem, rather than to some linear combination of theirs.

This can be achieved by applying an orthonormal transformation to the problem’s variable
space, that is:

x → x ′ = R · x (12)

This transformation has to be orthogonal, which means that it should preserve the lengths
of vectors and the angles between vectors. Furthermore, it should be an orientation-preserving
transformation. A V ×V matrix R that could provide such a transformation is called a rotation
matrix and has to be a member of the special orthogonal group, that is:

R ∈ SO(V ) ⇔
{

R−1 = RT

|R| = +1
(13)

Section 4.1 discusses the selection of a suitable such matrix.
Let f (R)(x ′), x ′ ∈ D′ be the rotated counterpart of function f (x), x ∈ D, such that

domain D′ fully encloses domain D, that is: D′ ⊇ D. Let us also assume temporarily that
function f (x) can be defined in the expanded domain D′ as well.
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Lemma 1 The following equalities hold:

f (R)(x ′) = f (RT · x ′) (14)

∇ f (R)(x ′) = R · ∇ f (RT · x ′) (15)

∇2 f (R)(x ′) = R · ∇2 f (RT · x ′) · RT (16)

Applying the method for function f (R)(x ′), x ′ ∈ D′ leads to an underestimator V (R)(x ′)
which is valid for the whole domain D′. Since D′ ⊇ D, this underestimator will be valid
for the original domain D as well. V (R)(x ′) = V (R)(R · x) is piecewise affine as it is
the pointwise maximum of hyperplanes, which are not necessarily parallel to some basis
vectors ev anymore. However, all these hyperplanes are valid linear cuts that can be accu-
mulated in the relaxation along with the ones that correspond to the original underestimator
V (x).

Depending on the availability of computational resources, many different rotation matri-
ces can be used as each attempt will have a chance to improve the overall tightness through
the accumulation of additional valid cuts. The final overall underestimator would then be the
pointwise maximum of all these cuts:

V (x) = max
{

V (Rr )(x) ∀r
}
, x ∈ D (17)

Figure 6 depicts underestimators V (R)(x) for different matrices R along with their point-
wise maximum, underestimator V (x).

4.1 Matrix selection

As it has already been mentioned, a suitable matrix R has to be a member of the spe-
cial orthogonal group, SO(V ). These matrices can be parameterized by � = V (V − 1)/2
parameters, called Euler angles. We shall denote these as ϕpq , p = 1, 2, . . . , V − 1, q =
p + 1, p + 2, . . . , V .

Let R(pq) be the V × V rotation matrix that corresponds to the rotation of the V -dimen-
sional space as the

(
x p, xq

)
-plane (two-dimensional) rotates counter-clockwise (vector ep

towards vector eq ) by angle ϕpq .

Fig. 6 Underestimators V (R)(x) for various matrices R and their pointwise maximum
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The elements of this matrix, R(pq)
vu , are as follows:

R(pq)
vu =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cos
(
ϕpq

)
, if v = u = p, q

sin
(
ϕpq

)
, if v = p and u = q

−sin
(
ϕpq

)
, if v = q and u = p

1 , if v = u and v �= p, q
0 , otherwise

(18)

Each rotation in the V -dimensional space is equivalent to � sequential rotations of lin-
early independent two-dimensional planes around axes of rotation that are perpendicular to
them. We make the convention that these planes would be the ones defined by pairs of our
basis vectors (ev, eu), such that 1 ≤ v < u ≤ V . The overall V × V rotation matrix would
then be:

R =
V −1∏

p=1

V∏

q=p+1

R(pq) (19)

Note that choosing ϕpq = 0, ∀p, q leads to the identity matrix. Thus, it can be infered that
the concept of domain rotation is a generalization of the original methodology (no rotation),
which corresponded to the case where R = I .

4.2 Domain selection

Since we use an orthonormally transformed variable space, we have to make sure that the
domain under consideration, D′ = [x ′L

1 , x ′U
1 ] × . . . × [x ′L

V , x ′U
V ], completely includes the

original domain of interest D = [x L
1 , xU

1 ]× . . .×[x L
V , xU

V ]. A proper selection of this domain
D′ can be done according to Lemma 2.

Lemma 2 Let D = [x L
v , xU

v ] be the original box domain of our problem, and let D′ =
[x ′L

r , x ′U
r ] be the “rotated” box domain that results after an orthonormal transformation. Let

also yrv be a binary parameter associated with the sign of Rrv , that is:

yrv =
{

1, if Rrv ≥ 0
0, otherwise

(20)

If the following hold for every r = 1, 2, . . . , V :

x ′L
r =

V∑

v=1
Rrv

{
yrvx L

v + (1 − yrv)xU
v

}

x ′U
r =

V∑

v=1
Rrv

{
(1 − yrv)x L

v + yrvxU
v

}
(21)

then D is a subset of D′, that is: D ⊆ D′.

However, since the method will involve partitioning of this domain, it may not be neces-
sary to consider all the subdomains thus produced. We can safely neglect all the subdomains
that do not overlap at all with the original domain D, which is the domain of interest. This
can be done easily by comparing the location of the corner points of each subdomain with
the actual bounds x L

v and xU
v of domain D. Note that in the general case, underestimators

Vwm(xw) for all permutations m, 1 ≤ m ≤ Mw will no longer have the same end points, x L
w

and xU
w , rather than each will have its own pair x

j L
m

w and x
jU
m

w . However, this does not pose
any complication since the combination of all permutations (through the two-dimensional
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X1’

X1

X2’
X2

Fig. 7 Original domain D, rotated domain D′, and identification of subdomains worth considering

convex hull of vertex and end points) can be trivially adapted to take this under consideration.
Figure 7 depicts illustratively a “rotated” domain D′ and which of its subdomains are worth
considering after a given level of partitioning.

Also note that for the methodology to be applicable, function f (x) has to be defined and
be C2-continuous in the domain D′ or at least in all its subdomains that we consider. This is
usually the case, since it is common that the functions of our model preserve their continuity
over a larger range than the one we select by imposing bounds on the various variables.
However, discontinuities might occur outside domain D and we have to be cautious so as
to exclude them from domain D′. This can be done with a sufficient increase of the level
of partitioning, since such an action would monotonically reduce domain D′. Note that:
N → +∞ ⇒ D′ → D.

4.3 Level of partitioning selection

A final decision that has to be made when we opt to work with a rotated domain, is the level
of partitioning that we will apply. This partitioning N ′

v , v = 1, 2, . . . , V will correspond to
the new variables x ′

v which are linear combinations of the problem’s natural variables xv .
This partitioning can be arbitrary selected, and the results are again expected to improve with
higher partitioning. However, it is more natural that we define the level of partitioning only
on the original domain D, since this is the one that has some natural meaning for our problem.

Given a selected level of partitioning N =
V∏

v=1
Nv , we propose partitioning of domain D′ in

N ′ =
V∏

v=1
N ′

v subdomains such that:
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N ′
v = �

V∑

u=1

|Rvu | Nu�, ∀v = 1, 2, . . . , V

This partitioning is suitable because it provides subdomains D′
i that are of comparable mea-

sures with the original subdomains Di . As a consequence, underestimators P ′
wmj (x ′) and

subsequently V ′(x ′) are expected to be of comparable tightness with their original counter-
parts. This is highly welcome because the additional linear cuts that will be accumulated in
the relaxation have a good chance of not being redundant.

4.4 Computation of α parameters

As it is has been shown in Eq. 1, the selection of the αi
v parameters involves computing bounds

on the elements of the Hessian matrix. In the case of an orthonormally transformed problem,
the Hessian matrix of the “rotated” function, f (R), is given by Eq. 16. For the calculation of
new αi ′

r values (that correspond to the new “rotated” function and subdomains), bounds for
the elements of the Hessian matrix of f (R) can be derived from the bounds of the original
Hessian of f by performing standard interval arithmetic on this equation. The following two
Lemmas are relevant with this computation.

Lemma 3 Let h(i)
vu and h(i)

vu be respectively lower and upper bounds of ∂2 f/∂xvxu that are

valid for the entire subdomain Di , and let h(R)(i ′)
rs and h(R)(i ′)

rs be respectively lower and

upper bounds of ∂2 f (R)/∂x ′
r x ′

s that are valid for the entire “rotated” subdomain D′
i , such

that D′
i ⊆ Di . The following expressions provide valid such bounds:

h(R)(i ′)
rs =

V∑

v=1

V∑

u=1

{

Rrv

[

yrv,su

(
h(i)

vu

)
+ (1 − yrv,su)

(

h(i)
vu

)]

RT
us

}

h(R)(i ′)
rs =

V∑

v=1

V∑

u=1

{

Rrv

[

(1 − yrv,su)
(

h(i)
vu

)
+
(

h(i)
vu

)

yrv,su

]

RT
us

} (22)

where yrv,su is a binary parameter associated with the sign of Rrv Rsu, that is:

yrv,su =
{

1, if Rrv Rsu ≥ 0
0, otherwise

(23)

Lemma 3 allows us to compute intervals for the elements of the new Hessian, given inter-
vals of the respective elements of the original one. However, for these intervals to be valid
for the complete subdomain of interest, D′

i , we need to use subdomains Di that completely
enclose the former, that is: D′

i ⊆ Di . Furthermore, these box subdomains should be as small

as possible, so as to avoid unnecessary overestimation of the αi ′
r values later on. Lemma 4

dictates a proper selection of such intervals Di .

Lemma 4 Let D′
i = [x ′L

r , x ′U
r ] be the “rotated” box subdomain of interest that results after

an orthonormal transformation, and let Di = [x L
v , xU

v ] be a box subdomain of the original
variable space D. Let also yrv be a binary parameter associated with the sign of Rrv = RT

vr ,
as defined in Lemma 2.

If the following hold for every v = 1, 2, . . . , V :

x L
v =

V∑

r=1
RT

rv

{
yrvx ′L

r + (1 − yrv)x ′U
r

}

xU
v =

V∑

r=1
RT

rv

{
(1 − yrv)x ′L

r + yrvx ′U
r

}
(24)
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then Di is the smallest suitable superset of domain D′
i .

Lemma 4 provides the tightest possible box subdomains that are orthogonal to the original
coordinate system, and completely enclose the corresponding “tilted” subdomains that are
orthogonal to the new –rotated– coordinate system. Note the inverse relationship between
Lemmas 2 and 4.

5 Complexity analysis

As described in the previous sections, the overall methodology involves three nested loops
at the rotation-, active variable-, and permutation-level. In fact, this inherent structure of
the algorithm makes it suitable for implementation in a distributed computing environment,
where satisfactory scaling is expected. The distribution of computing work can occur at either
one of these three levels, and investigating the different potential strategies actually poses a
very interesting theme for further research.

Let us now discuss the overall complexity of the algorithm. We denote with R the number
of different rotation matrices to be used, with V the number of variables, and with N the level
of partitioning we choose for the range of each variable. The complexity, C , is given by Eq. 25.

C = O
(

R × V × N V −1 × N
)

(25)

As it has already been mentioned in the first part of this series (Gounaris and Floudas 2008),
the univariate algorithm inherits the linear time complexity of the Graham-Scan convex hull
algorithm for sorted entries, that is O(N ).

Assuming that the partitioning is uniform (that is we select to partition the range of every
variable into an equal number of subdomains, N ), the total number of permutations that we
need to consider is N V −1. We should keep in mind that this assumption results in an exhaus-
tive domain partitioning that is not always necessary. For example, one could choose a subset
of the variables whose range would be partitioned into a smaller number of subdomains,
or even not partitioned at all (i.e., Nv = 1). Good candidates for such an action are those
variables v that do not participate strongly in the non-convexities and correspond to small
(or even zero) αv values.

Finally, the quantity R×V (number of matrices used times number of possible active vari-
ables) basically accounts for all two-dimensional planes that we opt to project to. As a general
rule, the larger the number of different projection planes used, the more the cuts that are accu-
mulated and the tighter the relaxation that ends up being formulated. The best possible results
will be obtained if one samples the whole Euler angle space at a very fine resolution �ϕ.
Note that for our application, it suffices to select Euler angles from the range [0, π

2 ), therefore

the total number of rotation matrices used would be: R =
(
�π/2

�ϕ
�
)�

. The latter assumes

equally fine sampling of all � = V (V − 1)/2 Euler angles of the V -dimensional space.
Again, this is an exhaustive strategy and does not necessarily ought to be followed in the
actual implementation. In fact, a good lower bound can usually be obtained without the need
for rotation. Furthermore, considering only one active variable will probably be sufficient,
as it is illustrated by the first part of Fig. 5 where each of the two depicted underestimators
provides a tight lower bound. However, the accumulation of many affine cuts that result from
domain rotations will contribute towards obtaining good tightness across the whole domain
under consideration. Therefore, whenever just a good lower bound is required, like in the
case of an objective function, one need not perform rotation, while rotation, which adds com-
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putational expense, should be performed only in special cases like in problem constraints
that are expected to be active.

6 Computational results

The methodology was implemented in C and applied on various test functions. These were
drawn from suitable collections that have been presented in the literature (Moré et al. 1981;
Ge and Qin 1990; Ali et al. 2005).

Table 1 presents the results for a set of two-variable functions. It can be seen that the lower
bounds obtained improve considerably the ones obtained from the original αBB method, and
that the results benefit from finer partitioning of the domain. All runs were performed on a
3.20 GHz Intel(R) Pentium(R) 4 processor with 1 Gb of RAM. Runs with partitioning level
32 × 32 averaged a CPU time of 0.40 s, while the more tedious runs with partitioning level
64×64 averaged 1.86 s, a result that is in good agreement with Eq. 25 (for bivariate functions,
doubling the level of partitioning should result in a four-fold increase in CPU time). Maxi-
mum run times for these two cases were 1.16 s and 6.41 s, respectively. It should be noted that
our implementation uses NPSOL (Gill et al. 1998) for performing function evaluations of
functions Gwmj (xw). However, since this corresponds to minimizations of convex objective
functions subject to only bound constraints, the CPU times are expected to be lower if we
use a local solver that makes use of this information and utilizes simpler data structures.

To illustrate the tightness of the underestimators across the whole domain under consid-
eration, we present Fig. 8 that depicts the plots for two highly nonlinear functions. The level
of partitioning, N1 × N2, and the resolution of Euler angle sampling, �ϕ12, used in each case
is mentioned, as well as some additional information regarding the improvement of lower
bound, and the number of linear cuts that have to be accumulated in the relaxation.

Table 2 provides results for various nonconvex functions with a higher number of variables.
The underestimators produced are generally very tight. Note the particularly good behavior

Fig. 8 Piecewise planar underestimators of some nonconvex functions
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in the case of multilinear functions (# 1-4), where even a small level of partitioning is usually
sufficient to considerably reduce, or even completely close, the gap between lower bound
and actual global optimum.

7 Conclusions

In Part I, we presented a novel convex underestimation method for general nonconvex
C2-continuous functions that is based on a piecewise application of the αBB underestimator
(Maranas and Floudas 1994; Androulakis et al. 1995; Adjiman and Floudas 1996; Adjiman
et al. 1998a,b). In this paper, we presented an extension of the method in order to address mul-
tivariate functions. We proposed projections into spaces of lower dimensionality so as to take
advantage of the high quality results of the univariate case as well as optional orthonormal
tranformations of the problem, in an attempt to improve the results already obtained. The
multivariate underestimators are piecewise affine, therefore the whole relaxation problem
can be formulated as an LP. Extensive computational testing demonstrated that the method
yields very tight underestimators, and the improvement over the original αBB underestimator
is significant. The level of partitioning is crucial to the quality of the results, both in terms
of lower bound and tightness over the whole domain under consideration. The orthonormal
tranformations improve the overall tightness, but have little effect on the value of the lower
bound. Since they add to the computational expense, their use is recommended only in cases
where they are expected to have a significant impact. Which rotation matrices to use is also
crucial for obtaining good results and computational performance. Their optimum selection,
possibly problem-specific, is an interesting open question.
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